The val158met polymorphism of human catechol-O-methyltransferase (COMT) affects anterior cingulate cortex activation in response to painful laser stimulation
نویسندگان
چکیده
BACKGROUND Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT) have been suggested to affect clinical and experimental pain-related phenotypes including regional mu-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography). The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI), PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD) response to painful laser stimulation. RESULTS 57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC), foremost in the mid-cingulate cortex, than carriers of the val158 allele. CONCLUSION This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.
منابع مشابه
Effect of catechol-O-methyltransferase val158met genotype on attentional control.
The cingulate cortex is richly innervated by dopaminergic projections and plays a critical role in attentional control (AC). Evidence indicates that dopamine enhances the neurophysiological signal-to-noise ratio and that dopaminergic tone in the frontal cortex is critically dependent on catechol-O-methyltransferase (COMT). A functional polymorphism (val158met) in the COMT gene accounts for some...
متن کاملCOMT val158met Genotype Affects Recruitment of Neural Mechanisms Supporting Fluid Intelligence
Fluid intelligence (g(f)) influences performance across many cognitive domains. It is affected by both genetic and environmental factors. Tasks tapping g(f) activate a network of brain regions including the lateral prefrontal cortex (LPFC), the presupplementary motor area/anterior cingulate cortex (pre-SMA/ACC), and the intraparietal sulcus (IPS). In line with the "intermediate phenotype" appro...
متن کاملCOMT val158met Polymorphism and Neural Pain Processing
A functional polymorphism (val158met) of the gene coding for Catechol-O-methyltransferase (COM) has been demonstrated to be related to processing of emotional stimuli. Also, this polymorphism has been found to be associated with pain regulation in healthy subjects. Therefore, we investigated a possible influence of this polymorphism on pain processing in healthy persons as well as in subjects w...
متن کاملThe association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia.
The catechol-O-methyl transferase (COMT) gene is considered to be a promising schizophrenia susceptibility gene. A common functional polymorphism (Val158Met) in the COMT gene affects dopamine regulation in the prefrontal cortex (PFC). Recent studies suggest that this polymorphism contributes to poor prefrontal functions, particularly working memory, in both normal individuals and patients with ...
متن کاملCatechol-O-methyltransferase Val158met polymorphism interacts with early experience to predict executive functions in early childhood.
Numerous studies demonstrate that the Methionine variant of the catechol-O-methyltransferase Val158Met polymorphism, which confers less efficient catabolism of catecholamines, is associated with increased focal activation of prefrontal cortex (PFC) and higher levels of executive function abilities. By and large, however, studies of COMT Val158Met have been conducted with adult samples and do no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010